
No Time To Leak
Exposing Timer-Free Cache-State
Leaks on ARM CPU

Fabian Thomas | PhD Student @ CISPA



Flush+Reload

2 ExfilState, uASC ’26, Leuven, Belgium



Flush+Reload

2 ExfilState, uASC ’26, Leuven, Belgium



Flush+Reload

reload (addr ) :
t0 = time()
load (addr )
t 1 = time()
return t1 −t0 < threshold

2 ExfilState, uASC ’26, Leuven, Belgium



Flush+Reload

reload (addr ) :
t0 = time()
load (addr )
t 1 = time()
return t1 −t0 < threshold

2 ExfilState, uASC ’26, Leuven, Belgium



What if we have
no timer at all?

3 ExfilState, uASC ’26, Leuven, Belgium



What if we have
no timer at all?

3 ExfilState, uASC ’26, Leuven, Belgium



Flush+Reload

reload (addr ) :
t0 = time()
load (addr )
t 1 = time()
return t1 −t0 < threshold

4 ExfilState, uASC ’26, Leuven, Belgium



Flush+Reload

reload (addr ) :
t0 = time()
load (addr )
t 1 = time()
return t1 −t0 < threshold

reload_oracle (addr ) :
i f addr in cache :

return 1
return 0

4 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Finding a Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

load [x0]

load [x1]

flush [x0]

load [x1]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

reference

x3 = 1
x2 = 8

microarch.
state

architectural
state

̸=

→ Found potential leak!

• Generate random instruction
sequence

• Generate cache state

• Prime microarchitectural state

• Run sequence

• Collect architectural state

• Compare to reference state

5 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k pick

x3 = 0

x2 = 8

reference? ?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:

• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k

pick

x3 = 0

x2 = 8

reference? ?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k

pick

x3 = 0

x2 = 8

reference? ?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state

• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k

pick

x3 = 0

x2 = 8

reference?

?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k

pick

x3 = 0

x2 = 8

reference?

?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k pick

x3 = 0

x2 = 8

reference? ?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k pick

x3 = 0

x2 = 8

reference? ?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Identifying a Good Leak

ldxr x2, [x0]

stxr x3, x4, [x0]

[x0]

[x1]

cache

-

[x1]

cache

x3 = 0
x2 = 8

x3 = 1
x2 = 8

microarch.
state

architectural
state

pic
k pick

x3 = 0

x2 = 8

reference? ?

fp++ tn++
= ̸=

tp++fn++
≠=

• Repeat 5k times:
• Randomly pick discovered
cache state

• Prime microarchitectural state
• Run sequence
• Collect architectural state
• Compare to reference state

• Compute F-score

• If high: Found Leaking
Sequence!

6 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Fuzzing Results

Side Channel C
or

te
x-

A
53

C
or

te
x-

A
55

C
or

te
x-

A
51

0
C

or
te

x-
A

52
0

C
or

te
x-

A
72

C
or

te
x-

A
73

C
or

te
x-

A
75

C
or

te
x-

A
76

C
or

te
x-

A
77

C
or

te
x-

A
78

C
or

te
x-

A
71

0
C

or
te

x-
A

71
5

C
or

te
x-

A
72

0
C

or
te

x-
A

72
5

C
or

te
x-

X
1

C
or

te
x-

X
2

C
or

te
x-

X
3

C
or

te
x-

X4
K

ry
o

Fa
lk

or
-V

1/
K

ry
o

K
ry

o-
V

2
K

ry
o-

3X
X

-G
ol

d
K

ry
o-

3X
X

-S
ilv

er
K

ry
o-

4
X

X
-G

ol
d

K
ry

o-
4

X
X

-S
ilv

er
C

ar
m

el
K

u
n

p
en

g
P

ro
O

ry
on

O
ry

on
V

2
P

-L
O

ry
on

V
2

P
-M

Ex
yn

os
M

3
N

eo
ve

rs
e-

N
1

N
eo

ve
rs

e-
V

2
Fi

re
st

or
m

-M
1

Ic
es

to
rm

-M
1

A
va

la
n

ch
e-

M
2

B
liz

za
rd

-M
2

Lx+Sx ✓2✓4✓4✓5✓2✓2✓3✓3 ✓3✓3✓3 ✓2 ✓3 ✓4∼4 ✓4 ✓3 ✓3 ✓3 ✓4 ✓4✓5✓4∼8

Store+Ret ✓2✓3✓3✓3 ∼2 ✓2✓3✓2✓3✓3✓3✓2✓3✓3✓3✓3 ✓2∼2✓3 ✓2 ✓3✓3✓2 ✓4✓2 ✓3 ✓3✓2✓2✓2✓4✓2✓3

Split-Store ✓2✓2 ✓2 ✓2

Translation-Race ✓2✓2 ✓2 ✓2

Pointer-Chase ✓3 ✓2

Affected ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

160 devices
37 ARMmicroarchitectures

7 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Fuzzing Results

Side Channel C
or

te
x-

A
53

C
or

te
x-

A
55

C
or

te
x-

A
51

0
C

or
te

x-
A

52
0

C
or

te
x-

A
72

C
or

te
x-

A
73

C
or

te
x-

A
75

C
or

te
x-

A
76

C
or

te
x-

A
77

C
or

te
x-

A
78

C
or

te
x-

A
71

0
C

or
te

x-
A

71
5

C
or

te
x-

A
72

0
C

or
te

x-
A

72
5

C
or

te
x-

X
1

C
or

te
x-

X
2

C
or

te
x-

X
3

C
or

te
x-

X4
K

ry
o

Fa
lk

or
-V

1/
K

ry
o

K
ry

o-
V

2
K

ry
o-

3X
X

-G
ol

d
K

ry
o-

3X
X

-S
ilv

er
K

ry
o-

4
X

X
-G

ol
d

K
ry

o-
4

X
X

-S
ilv

er
C

ar
m

el
K

u
n

p
en

g
P

ro
O

ry
on

O
ry

on
V

2
P

-L
O

ry
on

V
2

P
-M

Ex
yn

os
M

3
N

eo
ve

rs
e-

N
1

N
eo

ve
rs

e-
V

2
Fi

re
st

or
m

-M
1

Ic
es

to
rm

-M
1

A
va

la
n

ch
e-

M
2

B
liz

za
rd

-M
2

Lx+Sx ✓2✓4✓4✓5✓2✓2✓3✓3 ✓3✓3✓3 ✓2 ✓3 ✓4∼4 ✓4 ✓3 ✓3 ✓3 ✓4 ✓4✓5✓4∼8

Store+Ret ✓2✓3✓3✓3 ∼2 ✓2✓3✓2✓3✓3✓3✓2✓3✓3✓3✓3 ✓2∼2✓3 ✓2 ✓3✓3✓2 ✓4✓2 ✓3 ✓3✓2✓2✓2✓4✓2✓3

Split-Store ✓2✓2 ✓2 ✓2

Translation-Race ✓2✓2 ✓2 ✓2

Pointer-Chase ✓3 ✓2

Affected ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

160 devices
37 ARMmicroarchitectures

7 ExfilState, uASC ’26, Leuven, Belgium



ExfilState: Fuzzing Results

Side Channel C
or

te
x-

A
53

C
or

te
x-

A
55

C
or

te
x-

A
51

0
C

or
te

x-
A

52
0

C
or

te
x-

A
72

C
or

te
x-

A
73

C
or

te
x-

A
75

C
or

te
x-

A
76

C
or

te
x-

A
77

C
or

te
x-

A
78

C
or

te
x-

A
71

0
C

or
te

x-
A

71
5

C
or

te
x-

A
72

0
C

or
te

x-
A

72
5

C
or

te
x-

X
1

C
or

te
x-

X
2

C
or

te
x-

X
3

C
or

te
x-

X4
K

ry
o

Fa
lk

or
-V

1/
K

ry
o

K
ry

o-
V

2
K

ry
o-

3X
X

-G
ol

d
K

ry
o-

3X
X

-S
ilv

er
K

ry
o-

4
X

X
-G

ol
d

K
ry

o-
4

X
X

-S
ilv

er
C

ar
m

el
K

u
n

p
en

g
P

ro
O

ry
on

O
ry

on
V

2
P

-L
O

ry
on

V
2

P
-M

Ex
yn

os
M

3
N

eo
ve

rs
e-

N
1

N
eo

ve
rs

e-
V

2
Fi

re
st

or
m

-M
1

Ic
es

to
rm

-M
1

A
va

la
n

ch
e-

M
2

B
liz

za
rd

-M
2

Lx+Sx ✓2✓4✓4✓5✓2✓2✓3✓3 ✓3✓3✓3 ✓2 ✓3 ✓4∼4 ✓4 ✓3 ✓3 ✓3 ✓4 ✓4✓5✓4∼8

Store+Ret ✓2✓3✓3✓3 ∼2 ✓2✓3✓2✓3✓3✓3✓2✓3✓3✓3✓3 ✓2∼2✓3 ✓2 ✓3✓3✓2 ✓4✓2 ✓3 ✓3✓2✓2✓2✓4✓2✓3

Split-Store ✓2✓2 ✓2 ✓2

Translation-Race ✓2✓2 ✓2 ✓2

Pointer-Chase ✓3 ✓2

Affected ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

160 devices
37 ARMmicroarchitectures

7 ExfilState, uASC ’26, Leuven, Belgium



How do such sequences look like? — Lx+Sx

LDXR x2, [victim]

STXR x3, x4, [victim]

• Load victim

• Mark as exclusive access

• Store to victim

• Check exclusive access

• x3=0: Success

• x3=1: Failure

8 ExfilState, uASC ’26, Leuven, Belgium



How do such sequences look like? — Lx+Sx

LDXR x2, [victim]

STXR x3, x4, [victim]

• Load victim

• Mark as exclusive access

• Store to victim

• Check exclusive access

• x3=0: Success

• x3=1: Failure

8 ExfilState, uASC ’26, Leuven, Belgium



How do such sequences look like? — Lx+Sx

LDXR x2, [victim]

STXR x3, x4, [victim]

• Load victim

• Mark as exclusive access

• Store to victim

• Check exclusive access

• x3=0: Success

• x3=1: Failure

8 ExfilState, uASC ’26, Leuven, Belgium



How do such sequences look like? — Lx+Sx

LDXR x2, [victim]

STXR x3, x4, [victim]

• ExfilState uncovers:
victim in cache ⇐⇒ x3=0

• x3 architecturally leaks cache
state

• Problem: victim needs to be
writable

9 ExfilState, uASC ’26, Leuven, Belgium



How do such sequences look like? — Lx+Sx

LDXR x2, [victim]

STXR x3, x4, [victim]

• ExfilState uncovers:
victim in cache ⇐⇒ x3=0

• x3 architecturally leaks cache
state

• Problem: victim needs to be
writable

9 ExfilState, uASC ’26, Leuven, Belgium



How do such sequences look like? — Lx+Sx

LDXR x2, [victim]

STXR x3, x4, [victim]

• ExfilState uncovers:
victim in cache ⇐⇒ x3=0

• x3 architecturally leaks cache
state

• Problem: victim needs to be
writable

9 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

input victim

victim output

input

output

10 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

input victim victim
attacker

output
copy

input
copy

output

10 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim

11 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim

cache
hit

11 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim

cache
hit

11 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim

cache
hit

cache
miss

11 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim
attacker

cache
hit

cache
miss

11 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim
attacker

cache
hit

cache
miss

11 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

12 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

cache
miss

12 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

cache
miss

12 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

cache
miss

cache
miss

12 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

cache
miss

cache
miss

12 ExfilState, uASC ’26, Leuven, Belgium



How to exploit? — Cache-State Copier

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

victim
attacker

cache
hit

cache
miss

load x1, [x2]

branch x1

Triggers transient execution

load x2, victim

load x4, [attacker+x2]

cache
miss

cache
miss

attacker in cache ⇐⇒ victim in cache
→mount Lx+Sx

13 ExfilState, uASC ’26, Leuven, Belgium



Summary

• How to mount side channel attacks in a
world without timers?

• ExfilState automatically discovers
timerless cache-state leakage oracles

• Uses correlation-analysis for ranking

• Discovered 5 side channels on 37 ARM
microarchitectures

• Exploitation requires cache-state copying

fabianthomas.de

github.com/cispa/exfilstate

Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS ’25

14 ExfilState, uASC ’26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState


Summary

• How to mount side channel attacks in a
world without timers?

• ExfilState automatically discovers
timerless cache-state leakage oracles

• Uses correlation-analysis for ranking

• Discovered 5 side channels on 37 ARM
microarchitectures

• Exploitation requires cache-state copying

fabianthomas.de

github.com/cispa/exfilstate

Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS ’25

14 ExfilState, uASC ’26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState


Summary

• How to mount side channel attacks in a
world without timers?

• ExfilState automatically discovers
timerless cache-state leakage oracles

• Uses correlation-analysis for ranking

• Discovered 5 side channels on 37 ARM
microarchitectures

• Exploitation requires cache-state copying

fabianthomas.de

github.com/cispa/exfilstate

Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS ’25

14 ExfilState, uASC ’26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState


Summary

• How to mount side channel attacks in a
world without timers?

• ExfilState automatically discovers
timerless cache-state leakage oracles

• Uses correlation-analysis for ranking

• Discovered 5 side channels on 37 ARM
microarchitectures

• Exploitation requires cache-state copying

fabianthomas.de

github.com/cispa/exfilstate

Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS ’25

14 ExfilState, uASC ’26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState


Summary

• How to mount side channel attacks in a
world without timers?

• ExfilState automatically discovers
timerless cache-state leakage oracles

• Uses correlation-analysis for ranking

• Discovered 5 side channels on 37 ARM
microarchitectures

• Exploitation requires cache-state copying

fabianthomas.de

github.com/cispa/exfilstate

Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS ’25

14 ExfilState, uASC ’26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState


AES T-table

Plaintext byte
00 40 80 c0 f0

Plaintext byte
00 40 80 c0 f0

C
ac
h
e
lin

e

0

4

8

12

15

C
ac
h
e
lin

e

0

4

8

12

15

Figure 1: AES T-table cache-access pattern on an ARM64 Cortex-A72 with Lx+Sx
(left) and Flush+Reload (right).

ExfilState, uASC ’26, Leuven, Belgium



Lx+Sx

1 STTRH w1, [x2]

2 LDAXRH w2, [x1]

3 LDRSB x0, [x3]

4 STLXRB x0, w3 , [x1]

Figure 2: Lx+Sx on Apple Avalanche. x1 is the victim cache line. x2 and x3 are
unrelated cache lines. Instructions 1 and 3 are not needed on Cortex-A73.

ExfilState, uASC ’26, Leuven, Belgium



Manufacturer Models

Apple Mac Mini (M1), Mac Mini (M2)
ASUS ZenFone Max M1, ZenFone Max M2
AWS EC2 M8g Graviton4
FriendlyELEC NanoPi R6S
Fujitsu Arrows Be3
Globalscale MOCHAbin
Google PixelWatch, PixelWatch 2, Pixel, Pixel 2, Pixel 2 XL, Pixel 3, Pixel 4a, Pixel 5, Pixel 5a, Pixel 6, Pixel 6 Pro, Pixel 6a, Pixel 7, Pixel 7 Pro, Pixel 7a, Pixel 8, Pixel 8 Pro, Pixel 8a, Pixel 9, Pixel 9 Pro,

Pixel 9 Pro Fold, Pixel 9 Pro XL, Pixel Fold, Pixel Tablet
Google Cloud C4A Axion, T2A Ampere
Hardkernel ODROID-N2+, Odroid-C4
HUAWEI P20 Lite, Mate 9
Lenovo Tab P11, Tab P12
LG Velvet
Motorola Moto G31, Moto G54 5G, Moto G30, Moto G 5G (2022), Moto G Play (2024), Razr 5G, Razr+ (2024), Moto Z Force
Nokia C31
Nothing Phone (1)
NVIDIA Jetson Orin Nano
OnePlus 10T, 11, Nord CE 3 Lite, 7 Pro (US Version), 6T, Nord 2T, Nord 3, Ace 2V, 9 Pro
OPPO A53, A79 5G, Find X3 Lite, Reno10 Pro+ 5G
OrangePi Kunpeng Pro
Poco X6 Pro, M6 Pro 5G, F3
Qualcomm Dell XPS 13
Radxa ROCK 3A, ROCK 5C
Raspberry Pi 4 Model B, 5
Realme GT Neo 3T, GT Master Edition
Samsung Galaxy S7 edge (Verizon), Galaxy Note 5 (Verizon), Galaxy Tab S3 (Verizon), Galaxy A02s, Galaxy A8, Galaxy A10, Galaxy A12, Galaxy A14 5G, Galaxy A14 5G, Galaxy A15, Galaxy A25 5G,

Galaxy A35 5G, Galaxy A51, Galaxy A52s 5G, Galaxy A54 5G, Galaxy Z Flip 3 5G, Galaxy Z Flip 4, Galaxy Z Flip 5, Galaxy Z Fold 2 5G, Galaxy Z Fold 4, Galaxy Z Fold 5, Galaxy J7 Prime,
Galaxy A51 5G, Galaxy S8, Galaxy S8+, Galaxy S9, Galaxy S9, Galaxy S9+, Galaxy S20 5G, Galaxy S21 5G, Galaxy S21+ 5G, Galaxy S21 Ultra 5G, Galaxy M11, Galaxy Note 9, Galaxy Note 9,
Galaxy S23 FE, Galaxy S22 5G, Galaxy S22+ 5G, Galaxy S22 Ultra 5G, Galaxy S23+, Galaxy S23 Ultra, Galaxy S23 Ultra, Galaxy S24, Galaxy S24 Ultra, Galaxy S24 Ultra, Galaxy Tab A7 Lite LTE,
Galaxy Tab A 10.1 (2016) Wi-Fi, Galaxy Tab S7 FE 5G, Galaxy Tab A8Wi-Fi, Galaxy Tab A9Wi-Fi, Galaxy Tab S9 FE+, Galaxy Tab S7 Wi-Fi, Galaxy Tab S8 Ultra Wi-Fi

Sharp AQUOS sense2
Sony Xperia XZ1 Compact, Xperia 10 V, Xperia 1 V, Xperia XZ, Xperia 10 II
Vivo Y20s [G], Y31 (2021), Y73, X60, Y02s, Y95, Y12, Y15, U3x, Y17
Xiaomi Mi 11i, Mi A2 Lite, Redmi Note 13 Pro+ 5G, Redmi Note 11 5G, Redmi Note 11 Pro, Redmi Note 12, Redmi Note 12 Pro+
Zebra TC77



Microarchitecture Lx+Sx Store+Ret Split-Store Translation-Race Pointer-Chase Affected

Cortex-A53 0.00 100.00 ✓
2 0.00 100.00 ✓

2 0.00 99.42 ✓
3

✓
Cortex-A55 0.00 99.86 ✓

4 0.00 100.00 ✓
3

✓
Cortex-A510 19.63 86.31 ✓

4 1.27 98.27 ✓
3

✓
Cortex-A520 16.90 80.59 ✓

5 1.47 96.85 ✓
3

✓

Cortex-A72 0.00 100.00 ✓
2 0.00 99.94 ✓

2
✓

Cortex-A73 0.00 100.00 ✓
2 27.45 88.44 ∼2 0.00 99.70 ✓

2 0.40 98.71 ✓
2

✓
Cortex-A75 0.00 99.05 ✓

3 0.00 99.57 ✓
2 0.00 100.00 ✓

2
✓

Cortex-A76 7.04 92.90 ✓
3 0.00 99.92 ✓

2
✓

Cortex-A77 0.00 99.81 ✓
3

✓
Cortex-A78 0.00 99.77 ✓

2
✓

Cortex-A710 0.00 100.00 ✓
3

✓
Cortex-A715 0.00 99.90 ✓

3 0.00 100.00 ✓
3

✓
Cortex-A720 0.00 94.46 ✓

3 0.00 99.74 ✓
3

✓
Cortex-A725 0.00 88.43 ✓

3 0.00 99.74 ✓
2

✓

Cortex-X1 0.00 99.89 ✓
3

✓
Cortex-X2 0.00 99.94 ✓

3
✓

Cortex-X3 0.20 99.44 ✓
3

✓
Cortex-X4 0.00 99.98 ✓

3
✓

Kryo
Falkor-V1/Kryo 0.00 99.85 ✓

2 0.00 99.61 ✓
2 0.20 98.21 ✓

2
✓

Kryo-V2 0.20 99.83 ✓
3 0.00 99.36 ✓

2
✓

Kryo-3XX-Gold 0.10 99.00 ✓
4 35.45 98.43 ∼2 0.00 99.50 ✓

2 0.00 99.56 ✓
2

✓

Kryo-3XX-Silver 30.57 95.93 ∼4 1.27 95.55 ✓
3

✓
Kryo-4XX-Gold 0.00 99.93 ✓

2
✓

Kryo-4XX-Silver 1.96 98.92 ✓
4 0.98 98.41 ✓

3
✓

Carmel 4.59 97.46 ✓
3

✓

Kunpeng Pro 0.00 100.00 ✓
2

✓

Oryon 0.10 99.26 ✓
3 0.10 96.19 ✓

4
✓

Oryon V2 Phoenix L 0.49 83.42 ✓
3 0.00 98.81 ✓

2
✓

Oryon V2 Phoenix M 0.00 81.40 ✓
3 0.00 99.00 ✓

3
✓

Exynos M3 1.57 97.54 ✓
4 2.06 99.77 ✓

3
✓

Neoverse-N1 0.00 99.89 ✓
2

✓
Neoverse-V2 0.00 99.88 ✓

2
✓

Firestorm-M1 0.00 98.52 ✓
4 0.00 80.47 ✓

2
✓

Icestorm-M1 7.43 90.80 ✓
5 0.00 99.88 ✓

4
✓

Avalanche-M2 5.47 90.15 ✓
5 0.59 84.46 ✓

2
✓

Blizzard-M2 45.32 80.79 ∼8 5.28 93.27 ✓
3

✓



ExfilState: 5 Side Channels Discovered
1 LDXR x1, [victim]

2 STXR w0, x2 , [victim]

Figure 3: Lx+Sx: STXR (store exclusive) succeeds
(status in w0) only if victim cached.

1 ; w0 enc ’MOV x3 ,#0’, w1 ’MOV x3 ,#1’

2 ; w2 enc ’BR =come_back_here ’

3 STR w1, [victim]

4 STR w2, [victim , #4]

5 IC IVAC victim

6 STR w0, [victim]

7 RET victim

8 come_back_here:

Figure 4: Store+Ret: If victim cached, runs old
code (x3=1), else runs new (x3=0).

1 LDRB x0, [victim]

2 STR x1, [victim]

Figure 5: Split-Store: First partial store completes,
second faults→ bytes stored left if cached.

1 LDR x0, [victim]

2 STR x0, [page -boundary -ptr]

Figure 6: Translation-Race: Partial store succeeds
before fault when victim cached.

1 LDR x0, [victim] ; [victim ]=0 x3fff

2 LDR x1, [x0]

Figure 7: Pointer-Chase: Faults at 0x3fff (victim
cached) vs. 0x4000 (victim uncached).

ExfilState, uASC ’26, Leuven, Belgium



Demo: Leaking Touch Input on Pixel 9

ExfilState, uASC ’26, Leuven, Belgium


	Appendix

