\\\\\\\\\\\\\\\\\\\\\\

No Time To Leak

Exposing Timer-Free Cache-State
Leaks on ARM CPU

Fabian Thomas | PhD Student @ CISPA

Flush+Reload

2 EXFILSTATE, UASC '26, Leuven, Belgium

Flush+Reload

2 EXFILSTATE, UASC '26, Leuven, Belgium

Flush+Reload

reload (addr) :

t0 = time()
load (addr)
t1 = time()

return t1-t0O < threshold

2 EXFILSTATE, UASC '26, Leuven, Belgium

Flush+Reload

reload (addr) :

t0 = time()
load (addr)
t1 = time()

return t1-t0O < threshold

2 EXFILSTATE, UASC '26, Leuven, Belgium

To offer protection against timing attacks and fingerprinting, performance.now() is

coarsened based on whether or not the document is cross-origin isolated.

* Resolution in isolated contexts: 5 microseconds

* Resolution in non-isolated contexts: 10@ microseconds

[Commit 25e57
™ rniwa committed on ar

Reduce the precision of "high"

rdar://prable;

resolution time to ims

Before version 91, timer resolutions in Chrome were restricted to 5 microseconds on desktop, where site-

isolation is enabled, and to 100 microseconds on Android, where it's not.

Starting from version 91, following a specification change, Chrome will be restricting the resolution of explicit
timers (performance.now() , performance.timeOrigin, and other performance APls that expose
DOMHighResTimestamps) to 100 microseconds across platforms. By enabling cross-origin isolation, websites

can relax the restriction to 5 microseconds regardless of platform.

3 EXFILSTATE, UASC '26, Leuven, Belgium

To offer protection against timing attacks and fingerprinting, performance.now() is

coarsened based on whether or not the document is cross-origin isolated.

« Resolution in isolated contexts: 5 microseconds

« Resolution in non-isolated contexts: 10@ microseconds

Before version 91, timer resolutions in Chrome were restricted to 5 microseconds on desktop, where site-

isolation is enabled, and to 100 microseconds on Android, where it's not.

Starting from version 91, following a specification change, Chrome will be restricting the resolution of explicit
timers (performance.now() , performance.timeOrigin, and other performance APls that expose
DOMHighResTimestamps) to 100 microseconds across platforms. By enabling cross-origin isolation, websites

can relax the restriction to 5 microseconds regardless of platform.

[Commit 25e57
™ rniwa committed on ar

Reduce the precision of "high" resolution time to ims

oo What if we have
no timer at all?

3 EXFILSTATE, UASC '26, Leuven, Belgium

Flush+Reload

reload (addr) :

t0 = time()
load (addr)
t1 = time()

return t1-t0O < threshold

4 EXFILSTATE, UASC '26, Leuven, Belgium

Flush+Reload

reload (addr) : reload_oracle (addr) :
t0 = time() if addr in cache:
load (addr) —_— return 1
t1 = time() return O

return t1-t0O < threshold

4 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

. EXFILSTATE: Finding a Leak

%,

- Generate random instruction
sequence

LDXR x2, [x0]
sTxR x3, x4, [x0]

5 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

. EXFILSTATE: Finding a Leak

%,

cache

[x0] . .

[x1] - Generate random instruction
seguence

- Generate cache state

LDXR x2, [x0]
sTxR x3, x4, [x0]

5 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

3
%,

_ EXFILSTATE: Finding a Leak

cache
Loap [x0] [x0]
Loap [x1] [x1]
microarch.
state

LDXR x2, [x0]
sTxR x3, x4, [x0]

5 EXFILSTATE, UASC '26, Leuven, Belgium

- Generate random instruction

sequence

- Generate cache state

- Prime microarchitectural state

\
N

. EXFILSTATE: Finding a Leak

%,

cache
Loap [x0] [x0] . .
R | B - Generate random instruction
microarch. sequence
state . Generate cache state
LDXR x2, [x0] . . .
crxn %3, %t [x0] - Prime microarchitectural state

- Run sequence

5 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

cache
Loap [x0] [x0]
[LDAD [x1]][[x1]]
microarch.
state
architectural (o x2, [x0]
state [STXR x3, x4, [xo]]
x3 =0
x2 =8
reference

5 EXFILSTATE, UASC '26, Leuven, Belgium

. EXFILSTATE: Finding a Leak

- Generate random instruction

sequence

- Generate cache state
- Prime microarchitectural state
- Run sequence

. Collect architectural state

\
N

. EXFILSTATE: Finding a Leak

%,

cache cache

Loap [x0] [x0] - FLUSH [x0] . .
conn [x11 || x11 ix1] || voap [x1 - Generate random instruction
microarch. sequence
SN VA VA . Generate cache state
architectural | | pxr x2, [x0]) ' .
state sTxR %3, x4, [x0] - Primme microarchitectural state
Ny - Run sequence
x3 =0 x3 =1 .
% = 8 -3 - Collect architectural state
reference

5 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

. EXFILSTATE: Finding a Leak

%,

cache cache

Loap [x0] [x0] - FLUsH [x0]
Loap [x1] [x1] [x1] Loap [x1]

microarch.

architectural | | ;xr x2, [x0]
state

sTxR x3, x4, [x0]
x3 =0 x3 =
x2 = 8

reference \//

5 EXFILSTATE, UASC '26, Leuven, Belgium

- Generate random instruction

sequence

- Generate cache state

- Primme microarchitectural state
- Run sequence

- Collect architectural state

- Compare to reference state

\
N

. EXFILSTATE: Finding a Leak

%,

cache cache

Loap [x0] [x0] - FLUsH [x0]
Loap [x1] [x1] [x1] Loap [x1]

microarch.

architectural | | ;xr x2, [x0]
state

sTxR x3, x4, [x0]

v

x3 =0 x3 =
x2 = 8

reference \\f_/

— Found potential leak!

5 EXFILSTATE, UASC '26, Leuven, Belgium

- Generate random instruction

sequence

- Generate cache state

- Primme microarchitectural state
- Run sequence

- Collect architectural state

- Compare to reference state

\

£ EXFILSTATE: Identifying a Good Leak

%,

- Repeat 5k times:

[eJe]o]
oo

6 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

. EXFILSTATE: Identifying a Good Leak

%,

- Repeat 5k times:
Q\o\“ - Randomly pick discovered

cache cache state

[x0]
[x1]

[eJe]o]
oo

6 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

%,

A6
&

cache

[x0]
[x1]
microarch.
state

architectural [LDXR x2, [x0]]

[eJe]o]
oo

state STXR x3, x4, [x0]
x3 =0 |&
x2 = 8

6 EXFILSTATE, UASC '26, Leuven, Belgium

. EXFILSTATE: Identifying a Good Leak

- Repeat 5k times:

- Randomly pick discovered

cache state

- Prime microarchitectural state
- Run sequence
. Collect architectural state

\

£ EXFILSTATE: Identifying a Good Leak

%,

- Repeat 5k times:

e - Randomly pick discovered
&

[eJe]o]
[esd+

cache cache state

[x0] - Prime microarchitectural state
[x1] - Run sequence

microarch. \ . Collect architectural state
state s - Compare to reference state
architectural [| pxr x2, [x0]
state STXR x3, x4, [x0]
x3 =0 :
y_ g 5 reference
X = o
S~(x-o0
x2 =8

6 EXFILSTATE, UASC '26, Leuven, Belgium

A6
&

cache

[x0]
[x1]
microarch.
state

[eJe]o]
[esd+

architectural [| pxr x2, [x0]
state sTxr x3, x4, [x0]
x3 =
reference

')

X2 =
xS
fn++ tp++ X2 =

6 EXFILSTATE, UASC '26, Leuven, Belgium

. EXFILSTATE: Identifying a Good Leak

- Repeat 5k times:

- Randomly pick discovered
cache state

- Prime microarchitectural state

- Run sequence

- Collect architectural state

- Compare to reference state

\

£ EXFILSTATE: Identifying a Good Leak

%,

1 - Repeat 5k times:
?? %4’ - Randomly pick discovered
cache : cache cache state
[x0] - - Prime microarchitectural state
- Run sequence
microarch. \ / - Collect architectural state
state Y - Compare to reference state
architectural [| pxr x2, [x0]
state [STXR x3, x4, [XO]]
x3 i 0 5 reference " s j !
x2 = 8 77:\\ 4 x2 = 8

x3 =0
fn++ tp++| x2 =8 fp++ tn++

6 EXFILSTATE, UASC '26, Leuven, Belgium

\

£ EXFILSTATE: Identifying a Good Leak

%,

1 - Repeat 5k times:
?? %,r - Randomly pick discovered
o o
cache ; cache cache state
[x0] § - - Prime microarchitectural state
[x1] [x1] - Run sequence
microarch. \ / - Collect architectural state
state A . Compare to reference state
architectural | | pyp x2, [x0]
state stxm x3, x4, [x0] - Compute F-score
X3 =0 : Hx3 =1
R \7 reference ,)/ o - &
%2 = .) -
= T

x3 =0
fn++ tp++| X2 = 8 [fp++ tn++

6 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

. EXFILSTATE: Identifying a Good Leak

%,

{ - Repeat 5k times:
?? %4’ - Randomly pick discovered
cache : cache cache state
[x0] - - Prime microarchitectural state
- Run sequence
microarch. \ / - Collect architectural state
state Y - Compare to reference state
architectural [| pxr x2, [x0]
state [STXR — [XO]] - Compute F-score
B =0T fedence |7 - If high: Found Leaking
2-° = - 28 Sequence!

x3 =0
fn++ tp++| x2 =8 fp++ tn++

6 EXFILSTATE, UASC '26, Leuven, Belgium

\
N

-, . EXFILSTATE: Fuzzing Results

160 devices

37 ARM microarchitectures ¢

7 EXFILSTATE, UASC '26, Leuven, Belgium

. EXFILSTATE: Fuzzing Results

37 ARM microarchitectures

160 devices

AQ

- i
o TOTO ~
b =202 o - = -
0= 0= T T - N -2
RneiopeerefEllogpy € 93357 & d4p%7iEss
499999999933 IIRRRY S RREE_ P S22 HBEES
XX XXX X XXXXXXXXXXXX LO3>MMITO0crcc80086E5
VU000 0UVUBTLULLVBT, 03 s aosoes5552838288¢8
CECECCCECE L L ELEeE8298898:c3335¢8888gh
000000000000006066060602 ® &3 VOEQ>=
Side Channel 383688836836 8368S8S8sfesvsexexfgoocodzziclam
LX+Sx VEVAVAVENCNENENE: V3373 V23S A 33304 VA
STORE+RET N AT A SR N N N N N N N N eV N V] V223233020423 3R A 3
SPLIT-STORE /27?2 /22
TRANSLATION-RACE /22 22
POINTER-CHASE /3 /2
Affected VI XS

7 EXFILSTATE, UASC '26, Leuven, Belgium

. EXFILSTATE: Fuzzing Results

37 ARM microarchitectures

160 devices

AQ

- i
o TOTO ~
D 5202 O 22 -
0= 0= T T - N -2
RneiopeerefEllogpy € 93357 & d4p%7iEss
499999999933 IIRRRY S RREE_ P S22 HBEES
XX XXX X XXXXXXXXXXXX LO3>MMITO0crcc80086E5
VU000 0UVUBTLULLVBT, 03 s aosoes5552838288¢8
CECECCCECE L L ELEeE8298898:c3335¢8888gh
000000000000006066060602 ® &3 VOEQ>=
Side Channel 383688836836 8368S8S8sfesvsexexfgoocodzziclam
LX+Sx VEVAVAVENCNENENE: V3373 V23S A 33304 VA
STORE+RET N AT A SR N N N N N N N N eV N V] V223233020423 3R A 3
SPLIT-STORE /27?2 /22
TRANSLATION-RACE /22 22
POINTER-CHASE /3 /2
Affected VI XS

7 EXFILSTATE, UASC '26, Leuven, Belgium

-, . How do such sequences look like? — Lx+Sx

LDXR x2, [victim]
STXR x3, x4, [victim]

8 EXFILSTATE, UASC '26, Leuven, Belgium

How do such sequences look like? — Lx+SXx

LDXR x2, [victim]
STXR x3, x4, [victim]

- Load victim

- Mark as exclusive access

8 EXFILSTATE, UASC '26, Leuven, Belgium

‘i1,

3
%>

LDXR

STXR x3, x4,

- Load victim

- Mark as exclusive access

8 EXFILSTATE, UASC '26, Leuven, Belgium

How do such sequences look like? — Lx+SXx

[victim]

[victim]

. Store to victim
- Check exclusive access
- x3=0: Success

- x3=1: Failure

How do such sequences look like? — Lx+SXx

- EXFILSTATE uncovers:
victimin cache <= x3=0

LDXR x2, [victim]
STXR %3, x4, [victim]

9 EXFILSTATE, UASC '26, Leuven, Belgium

How do such sequences look like? — Lx+SXx

LDXR x2, [victim]
STXR %3, x4, [victim]

9 EXFILSTATE, UASC '26, Leuven, Belgium

- EXFILSTATE uncovers:

victimin cache <= x3=0

- x3 architecturally leaks cache

state

How do such sequences look like? — Lx+SXx

LDXR x2, [victim]
STXR %3, x4, [victim]

9 EXFILSTATE, UASC '26, Leuven, Belgium

- EXFILSTATE uncovers:

victimin cache <= x3=0

- x3 architecturally leaks cache

state

- Problem: victim needs to be

writable

AR

How to exploit? — Cache-State Copier

Z
Yo >

input victim

input

10 EXFILSTATE, UASC '26, Leuven, Belgium

R

How to exploit? — Cache-State Copier

v
Z,
KT

copy
—

input victim victim output

attacker

. copy
INnput o output

10 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution
BRANCH X1 &~

LOAD X2, VICTIM

LOAD X4, [ATTACKER+X2]

victim

11 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache

LOAD X2, VICTIM .
’ hit

LOAD X4, [ATTACKER+X2]

victim

11 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache

LOAD X2, VICTIM .
’ hit

LOAD X4, [ATTACKER+X2]

victim

11 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache

hit

LOAD X4, [ATTACKER+X2]
cache

miss

LOAD X2, VICTIM

victim

11 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache

hit

LOAD X4, [ATTACKER+X2]
cache

miss

LOAD X2, VICTIM

victim

attacker

11 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache

hit

LOAD X4, [ATTACKER+X2]
cache

miss

LOAD X2, VICTIM

victim

attacker

11 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution
BRANCH X1 &~

LOAD X2, VICTIM

LOAD X4, [ATTACKER+X2]

12 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'u o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache

LOAD X2, VICTIM .
miss

LOAD X4, [ATTACKER+X2]

12 EXFILSTATE, UASC '26, Leuven, Belgium

R

How to exploit? — Cache-State Copier

z,
Yo >

Loap x1, [x2] __- Triggers transient execution

BRANCH X1 &~
cache

LOAD X2, VICTIM .
miss

LOAD X4, [ATTACKER+X2]

12 EXFILSTATE, UASC '26, Leuven, Belgium

" How to exploit? — Cache-State Copier

'w/ o

Loap x1, [x2] - Triggers transient execution

BRANCH X1 &~
cache
LOAD X2, VICTIM .
miss
LOAD X4, [ATTACKER+X2]
cache
miss

12 EXFILSTATE, UASC '26, Leuven, Belgium

RN

How to exploit? — Cache-State Copier

B
2

Loap x1, [x2] __- Triggers transient execution

BRANCH X1 &~
cache
LOAD X2, VICTIM .
miss
LOAD X4, [ATTACKER+X2]
cache
miss

12 EXFILSTATE, UASC '26, Leuven, Belgium

v

How to exploit? — Cache-State Copier

Loap x1, [x2] __- Triggers transient execution

BRANCH X1 %™~

cache
LOAD X2, VICTIM .
’ hit
LOAD X4, [ATTACKER+X2]
cache
miSS victim

attacker

Loap x1, [x2] __- Triggers transient execution

BRANCH X1 %~
cache

LOAD X2, VICTIM .
miss
LOAD X4, [ATTACKER+X2] \’
cache

miss

attacker in cache < victim in cache

— mount LX+SX

13 EXFILSTATE, UASC '26, Leuven, Belgium

i,
;:// R Summary Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS '25
o

- How to mount side channel attacks in a

fabianthomas.de

world without timers?

github.com/cispa/exfilstate

14 EXFILSTATE, UASC '26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState

i,
;:// R Summary Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS '25
o

- How to mount side channel attacks in a fabianthomas.de
world without timers?

- EXFILSTATE automatically discovers
timerless cache-state leakage oracles

github.com/cispa/exfilstate

14 EXFILSTATE, UASC '26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState

i,
;:// R Summary Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS '25
o

- How to mount side channel attacks in a fabianthomas.de

world without timers?

- EXFILSTATE automatically discovers
timerless cache-state leakage oracles

- Uses correlation-analysis for ranking

github.com/cispa/exfilstate

14 EXFILSTATE, UASC '26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState

i,
;:// R Summary Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS '25
o

- How to mount side channel attacks in a fabianthomas.de
world without timers?

- EXFILSTATE automatically discovers
timerless cache-state leakage oracles

- Uses correlation-analysis for ranking

- Discovered 5 side channels on 37 ARM
microarchitectures

github.com/cispa/exfilstate

14 EXFILSTATE, UASC '26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState

i,
;:// R Summary Fabian Thomas, Michael Torres, Daniel Moghimi, Michael Schwarz @ CCS '25
o

- How to mount side channel attacks in a

fabianthomas.de

world without timers?

- EXFILSTATE automatically discovers
timerless cache-state leakage oracles

- Uses correlation-analysis for ranking

- Discovered 5 side channels on 37 ARM

microarchitectures

. . . o ithub. i filstat
- Exploitation requires cache-state copying github.con/cispa/exfilstate

14 EXFILSTATE, UASC '26, Leuven, Belgium

https://fabianthomas.de/publications/
https://github.com/cispa/ExfilState

Plaintext byte Plaintext byte
00 40 80 c0 f0

Cache line
Cache line

Figure 1: AES T-table cache-access pattern on an ARM64 Cortex-A72 with Lx+Sx
(left) and Flush+Reload (right).

EXFILSTATE, UASC '26, Leuven, Belgium

5, . LX¥SX

STTRH wl, [x2]
LDAXRH w2, [x1]
LDRSB x0, [x3]

4 STLXRB x0, w3, [x1]

Figure 2: Lx+Sx on Apple Avalanche. x1 is the victim cache line. x2 and x3 are
unrelated cache lines. Instructions 1and 3 are not needed on Cortex-A73.

EXFILSTATE, UASC '26, Leuven, Belgium

Manufacturer

Models

Apple

ASUS

AWS
FriendlyELEC
Fujitsu
Globalscale
Google

Google Cloud
Hardkernel
HUAWEI
Lenovo

LG

Motorola
Nokia
Nothing
NVIDIA
OnePlus
oPPO
OrangePi
Poco
Qualcomm
Radxa
Raspberry Pi
Realme
Samsung

Sharp
Sony
Vivo
Xiaomi
Zebra

Mac Mini (M1), Mac Mini (M2)

ZenFone Max M1, ZenFone Max M2

EC2 M8g Graviton4

NanoPi R6S

Arrows Be3

MOCHAbin

Pixel Watch, Pixel Watch 2, Pixel, Pixel 2, Pixel 2 XL, Pixel 3, Pixel 4a, Pixel 5, Pixel 5a, Pixel 6, Pixel 6 Pro, Pixel 6a, Pixel 7, Pixel 7 Pro, Pixel 7a, Pixel 8, Pixel 8 Pro, Pixel 8a, Pixel 9, Pixel 9 Pro,
Pixel 9 Pro Fold, Pixel 9 Pro XL, Pixel Fold, Pixel Tablet

C4A Axion, T2A Ampere

ODROID-N2+, Odroid-C4

P20 Lite, Mate 9

Tab P11, Tab P12

Velvet

Moto G31, Moto G54 5G, Moto G30, Moto G 5G (2022), Moto G Play (2024), Razr 5G, Razr+ (2024), Moto Z Force

c3l

Phone (1)

Jetson Orin Nano

10T, 11, Nord CE 3 Lite, 7 Pro (US Version), 6T, Nord 2T, Nord 3, Ace 2V, 9 Pro

AS3, A79 5G, Find X3 Lite, RenolO Pro+ 5G

Kunpeng Pro

X6 Pro, M6 Pro 5G, F3

Dell XPS 13

ROCK 3A, ROCK 5C

4Model B, 5

GT Neo 3T, GT Master Edition

Galaxy S7 edge (Verizon), Galaxy Note 5 (Verizon), Galaxy Tab S3 (Verizon), Galaxy AO2s, Galaxy A8, Galaxy AlO, Galaxy A12, Galaxy Al4 5G, Galaxy Al4 5G, Galaxy Al5, Galaxy A25 5G,
Galaxy A35 5G, Galaxy AS1, Galaxy A52s 5G, Galaxy AS4 5G, Galaxy Z Flip 3 5G, Galaxy Z Flip 4, Galaxy Z Flip 5, Galaxy Z Fold 2 5G, Galaxy Z Fold 4, Galaxy Z Fold 5, Galaxy 37 Prime,
Galaxy AS51 5G, Galaxy S8, Galaxy S8+, Galaxy S9, Galaxy S9, Galaxy S9+, Galaxy S20 5G, Galaxy S21 5G, Galaxy S21+ 5G, Galaxy S21 Ultra 5G, Galaxy MT11, Galaxy Note 9, Galaxy Note 9,
Galaxy S23 FE, Galaxy S22 5G, Galaxy S22+ 5G, Galaxy S22 Ultra 5G, Galaxy S23+, Galaxy $23 Ultra, Galaxy S23 Ultra, Galaxy S24, Galaxy S24 Ultra, Galaxy S24 Ultra, Galaxy Tab A7 Lite LTE,
Galaxy Tab A 101 (2016) Wi-Fi, Galaxy Tab S7 FE 5G, Galaxy Tab A8 Wi-Fi, Galaxy Tab A9 Wi-Fi, Galaxy Tab S9 FE+, Galaxy Tab S7 Wi-Fi, Galaxy Tab S8 Ultra Wi-Fi

AQUOS sense2

Xperia XZ1 Compact, Xperia 10 V, Xperia 1V, Xperia XZ, Xperia 10 Il

Y20s [G], Y31 (2021), Y73, X60, Y025, Y95, Y12, Y15, U3x, Y17

MiT1i, Mi A2 Lite, Redmi Note 13 Pro+ 5G, Redmi Note 11 5G, Redmi Note 11 Pro, Redmi Note 12, Redmi Note 12 Pro+

TC77

Microarchitecture LX+Sx STORE+RET SPLIT-STORE TRANSLATION-RACE POINTER-CHASE Affected
Cortex-A53 000 10000 v* 000 10000 /2 000 9942 /* v
Cortex-A55 000 9986 /% 000 10000 3 v
Cortex-A510 1963 8631 4 127 9827 /P v
Cortex-A520 1690 8059 v° 147 9685 /* v
Cortex-A72 000 10000 /7 000 9994 /7 v
Cortex-A73 000 10000 v 2745 8844 7 000 9970 /2 040 9871 /2 v
Cortex-A75 000 99.05 7 000 9957 +? 000 10000 /? v
Cortex-A76 704 9290 v/ 000 9992 v
Cortex-A77 000 9981 /P v
Cortex-A78 000 9977 /2 v
Cortex-A710 000 10000 /¥ v
Cortex-A715 000 9990 72 000 10000 3 v
Cortex-A720 000 9446 /® 000 9974 /? v
Cortex-A725 000 8843 /° 000 9974 J/? v
Cortex-X1 000 99.89 73 v
Cortex-X2 000 9994 73 v
Cortex-X3 020 9944 /? v
Cortex-X4 000 9998 /® v
Kryo

Falkor-V1/Kryo 000 9985 72 000 9961 +? 020 9821 /2 v
Kryo-v2 020 9983 v 000 9936 J/? v
Kryo-3XX-Gold 010 99.00 /4 3545 9843 2 000 9950 v 000 9956 /2 v
Kryo-3XX-Silver 3057 9593 4 127 9555 73 v
Kryo-4XX-Gold 000 9993 /2 v
Kryo-4XX-Silver 196 9892 /¢ 098 984 v
Carmel 459 9746 73 v
Kunpeng Pro 000 10000 a v
Oryon 010 9926 ' 010 9619 4 v
Oryon V2 Phoenix L 049 8342 ' 0.00 98.81 72 v
Oryon V2 PhoenixM 0.00 8140 7 000 9900 72 v
Exynos M3 157 9754 /4 206 9977 /P v
Neoverse-N1 000 9989 72 v
Neoverse-V2 000 9988 /7 v
Firestorm-M1 0.00 9852 e 0.00 80.47 72 v
Icestorm-M1 743 9080 v° 000 9988 v* v
Avalanche-M2 547 9015 /° 059 8446 /2 v
Blizzard-M2 4532 8079 % 528 9327 /P v

. EXFILSTATE: 5 Side Channels Discovered

1 LDXR x1, [victim]
2 STXR wO, x2, [victim]

Figure 3: LXx+Sx: STXR (store exclusive) succeeds
(status in w0) only if victim cached.

1, w0 enc MOV z3,#0°, wl MOV z3,#1°
2 ; w2 enc ’BR =come_back_here’

3 STR wl, [victim]

4 STR w2, [victim, #4]

5 IC IVAC victim

6 STR wO, [victim]

7 RET victim

8 come_back_here:

Figure 4: STORE+RET: If victim cached, runs old
code (x3=1), else runs new (x3=0).

EXFILSTATE, UASC '26, Leuven, Belgium

1 LDRB x0, [victim]
2 STR x1, [victim]

Figure 5: SPLIT-STORE: First partial store completes,
second faults — bytes stored left if cached.

1 LDR x0, [victim]
2 STR x0, [page-boundary-ptr]

Figure 6: TRANSLATION-RACE: Partial store succeeds
before fault when victim cached.

1 LDR x0, [victim]l ; [victim]=0z3fff
2 LDR x1, [x0]

Figure 7: POINTER-CHASE: Faults at 0x3f£f (victim
cached) vs. 0x4000 (victim uncached).

Demo: Leaking Touch Input on Pixel 9

EXFILSTATE, UASC '26, Leuven, Belgium

	Appendix

